fbpx

Drug2ways: Reasoning over causal paths in biological networks for drug discovery

by Daniel Rivas-Barragan, Sarah Mubeen, Francesc Guim Bernat, Martin Hofmann-Apitius, Daniel Domingo-Fernández

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.


Make more money selling and advertising your products and services for free on Ominy market. Click here to start selling now


Paper source
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008464

READ MORE  Ten simple rules for writing Dockerfiles for reproducible data science

Ominy science editory team

A team of dedicated users that search, fetch and publish research stories for Ominy science.

Enable notifications of new posts    OK No thanks