Regional sequence expansion or collapse in heterozygous genome assemblies

by Kathryn C. Asalone, Kara M. Ryan, Maryam Yamadi, Annastelle L. Cohen, William G. Farmer, Deborah J. George, Claudia Joppert, Kaitlyn Kim, Madeeha Froze Mughal, Rana Said, Metin Toksoz-Exley, Evgeny Bisk, John R. Bracht

High levels of heterozygosity present a unique genome assembly challenge and can adversely impact downstream analyses, yet is common in sequencing datasets obtained from non-model organisms. Here we show that by re-assembling a heterozygous dataset with variant parameters and different assembly algorithms, we are able to generate assemblies whose protein annotations are statistically enriched for specific gene ontology categories. While total assembly length was not significantly affected by assembly methodologies tested, the assemblies generated varied widely in fragmentation level and we show local assembly collapse or expansion underlying the enrichment or depletion of specific protein functional groups. We show that these statistically significant deviations in gene ontology groups can occur in seemingly high-quality assemblies, and result from difficult-to-detect local sequence expansion or contractions. Given the unpredictable interplay between assembly algorithm, parameter, and biological sequence data heterozygosity, we highlight the need for better measures of assembly quality than N50 value, including methods for assessing local expansion and collapse.

Paper source
Plos Journal

READ MORE  Moving analytical ultracentrifugation software to a good manufacturing practices (GMP) environment

Ominy science editory team

A team of dedicated users that search, fetch and publish research stories for Ominy science.

Enable notifications of new posts OK No thanks