fbpx

XENON1T may have detected something very interesting, or maybe not

Earlier this week we received a curious embargoed press release from the XENON collaboration about a preprint that they have since posted to the arXiv server. The team has measured an excess of detection events in the XENON1T dark-matter detector, which ran for two years deep under a mountain at the Gran Sasso National Laboratory in Italy.

The team is very explicitly not claiming this to be the first-ever direct detection of dark matter, a mysterious substance that comprises most of mass in the universe. Instead, they are suggesting that the excess could be caused by axions from the Sun hypothetical particles whose existence is not predicted by the Standard Model of particle physics.

Another suggestion made by the team is that the excess is caused by the unexpected detection of neutrinos. This could mean that our current understanding of neutrinos is deficient they could have larger magnetic moments than currently predicted by the Standard Model, for example which would also be interesting.

Tiny amount of tritium


Subscribe now to remove this ad, read unlimited articles, bookmark your favorite post and soo much more

A more mundane explanation is that the excess is related to the radioactive decay of an extremely tiny amount of tritium that managed to get into the detector, which comprises 2 ton of ultra-pure xenon.


Make more money selling and advertising your products and services for free on Ominy market. Click here to start selling now


But the physics is not why we thought the press release was curious.  One thing is that the preprint has not yet been peer-reviewed by external experts prior to publication although I have no doubt that this will be done in due course and a paper will be published.

The second thing is that from a statistical point of view, the excess could very well be a fluctuation rather than a real thing. Normally a statistical significance of 5σ or greater is required to claim a discovery in particle physics, whereas values of 3.5σ or less are quoted for the axion, neutrino and tritium hypotheses.

READ MORE  Molten rock that feeds volcanoes may help with volcanic hazard management

As a result, we passed on rushing out a news story about this so perhaps we missed the boat on all the excitement. And who knows, maybe a successor to XENON1T will discover solar axions.

Story source

Physics world

Ominy science editory team

A team of dedicated users that search, fetch and publish research stories for Ominy science.

What do you think??

Enable notifications of new posts    OK No thanks