Regulation of epithelial integrity and organ growth by Tctp and Coracle in Drosophila

by Sung-Ryeong Lee, Sung-Tae Hong, Kwang-Wook Choi

Regulation of cell junctions is crucial for the integrity of epithelial tissues and organs. Cell junctions also play roles in controlling cell proliferation for organ growth. Translationally controlled tumor protein (TCTP) is a conserved protein involved in growth control, but its role in cell junctions is unknown. Here we show that Drosophila Tctp directly interacts with the septate junction protein Coracle (Cora) to regulate epithelial integrity and organ growth. Tctp localizes together with Cora in the epidermis of the embryo. Loss of Cora reduces the level of Tctp in the epidermis but not vice versa. cora/+ or Tctp/+ single heterozygotes develop normally to adulthood. However, double heterozygotes for cora and Tctp mutations show severe disruption of epithelia causing synthetic lethality in the embryo. Double knockdown of Cora and Tctp in eye imaginal disc synergistically leads to disruption of the eye disc, resulting in a severe reduction or loss of eye and head. Conversely, double knockdown of Cora and Tctp in wing disc causes overgrowth as well as cell death. Inhibition of cell death under this condition causes hyperplastic growth of the wing disc. Tctp also shows direct and functional interaction with Cora-associated factors like Yurt and Na+/K+-ATPase. This study suggests that proper levels of Tctp and Cora are essential for the maintenance of the Cora complex and the integrity of epithelia. Our data also provide evidence that both Cora and Tctp are required to suppress overgrowth in developing wing.

Paper source
Plos Journal

READ MORE  Characterizing chromatin folding coordinate and landscape with deep learning

Ominy science editory team

A team of dedicated users that search, fetch and publish research stories for Ominy science.

Enable notifications of new posts    Ok No thanks
Copyright 2020 Ominy science

Content published here is for information purposes alone.