High speed microscope capture millisecond electrical changes in neurons in the cortex of an alert mouse

Electrical and chemical signals flash through our brains constantly as we move through the world, but it would take a high-speed camera and a window into the brain to capture their fleeting paths.

Neuroscientists can now capture millisecond electrical changes in neurons in the cortex of an alert mouse, allowing tracing of neural signals, including subthreshold events, in the brain.

University of California, Berkeley, investigators have built a camera: a microscope that can image the brain of an alert mouse 1,000 times a second, recording for the first time the passage of millisecond electrical pulses through neurons.

The new technique combines all-optical scanning with two-photon fluorescence imaging to produce a 2D rasterized picture every 1,000-3,000 milliseconds. That and another technique that allows 3D imaging of large areas of the mouse cortex to a depth of 650 microns will aid study of neural circuits.

“This is really exciting, because we are now able to do something that people really weren’t able to do before,”

said lead researcher Na Ji, a UC Berkeley associate professor of physics and of molecular and cell biology.

The new imaging technique combines two-photon fluorescence microscopy and all-optical laser scanning in a state-of-the-art microscope that can image a two-dimensional slice through the neocortex of the mouse brain up to 3,000 times per second. That’s fast enough to trace electrical signals flowing through brain circuits.

With this technique, neuroscientists like Ji can now clock electrical signals as they propagate through the brain and ultimately look for transmission problems associated with disease.

One key advantage of the technique is that it will allow neuroscientists to track the hundreds to tens of thousands of inputs any given brain cell receives from other brain cells, including those that don’t trigger the cell to fire. These sub-threshold inputs either exciting or inhibiting the neuron gradually add up to a crescendo that triggers the cell to fire an action potential, passing information along to other neurons.

READ MORE  Elon Musk's brain machine interface will let you stream music straight into your brain

Watch the full video below

When a neuron fires, calcium flows into the cell in a wave that sweeps along the cell body. Images of this infragranular neuron were obtained three times per second by two-dimensional scanning with a Bessel focus. Redder structures are deeper in the mouse cortex.

From electrodes to fluorescence imaging

The typical method for recording electrical firing in the brain, via electrodes embedded in the tissue, detects only blips from a few neurons as the millisecond voltage changes pass by. The new technique can pinpoint the actual firing neuron and follow the path of the signal, millisecond by millisecond.

“In diseases, many things are happening, even before you can see neurons firing, like all the subthreshold events,”

said Ji, a member of UC Berkeley’s Helen Wills Neuroscience Institute. “We’ve never looked at how a disease will change with subthreshold input. Now, we have a handle to address that.”

mice brain activity
Rapid imaging – a thousand times per second — shows spontaneous electrical activity in four separate neurons 75 micron inside the brain of an alert mouse. This is a 3-micron-thick slice through the neocortex – so thin that the cell body of the neuron is seen only in cross section, as a circle. (UC Berkeley image by Na Ji)

Ji and her colleagues reported the new imaging technique in the March issue of the journal Nature Methods. In the same issue, she and other colleagues also published a paper demonstrating a different technique for imaging calcium signaling over much of an entire hemisphere of the mouse brain at once, one that uses a wide-field-of-view “mesoscope” with two-photon imaging and Bessel focus scanning. Calcium concentrations are linked with voltage changes as signals are transmitted through the brain.

“This is the first time anyone has shown in three dimensions the neural activity of such a large volume of the brain at once, which is far beyond what electrodes can do,”

Ji said.

“Furthermore, our imaging approach gives us the ability to resolve the synapses of each neuron.”

Synapses are the spots where neurotransmitters are released by one neuron to excite or inhibit another.

READ MORE  Recent research: DNA mimic outwits enzyme.

One of Ji’s goals is to understand how neurons interact across large areas of the brain and eventually locate diseased circuits linked to brain disorders.

“In brain disorders, including neurodegenerative disease, it’s not just a single neuron or a few neurons that get sick,”

Ji said.

“So, if you really want to understand these illnesses, you want to be able to look at as many neurons as possible over different brain regions. With this method, we can get a much more global picture of what is happening in the brain.”

Two-photon microscopy

Ji and her colleagues are able to peer into the brain thanks to probes that can be pinned to specific types of cells and become fluorescent when the environment changes. To track voltage changes in neurons, for example, her team employed a sensor developed by co-author Michael Lin of Stanford University that becomes fluorescent when the cell membrane depolarizes as a voltage signal propagates along the cell membrane.

two photon microscopy
Using a two-photon fluorescence microscope with an extra-large field of view, UC Berkeley researchers imaged neurons (green) in a large chunk of the cortex of the brain of a living mouse. The area shows neurites in a volume of 4.2 mm × 4.2 mm x 100 microns. The dark branches are blood vessels. (UC Berkeley image by Na Ji)

The researchers then illuminate these fluorescent probes with a two-photon laser, which makes them emit light, or fluoresce, if they have been activated. The emitted light is captured by a microscope and combined into a 2D image that shows the location of the voltage change or the presence of a specific chemical, such as the signaling ion, calcium.

By rapidly scanning the laser over the brain, much like a flashlight that gradually reveals the scene inside a darkened room, researchers are able to obtain images of a single, thin layer of the neocortex. The team was able to conduct 1,000 to 3,000 full 2D scans of a single brain layer every second by replacing one of the laser’s two rotating mirrors with an optical mirror a technique called free-space angular-chirp-enhanced delay (FACED). FACED was developed by paper co-author Kevin Tsia at the University of Hong Kong.

READ MORE  Potentially fatal combinations of humidity and heat are emerging across the globe

The kilohertz imaging not only revealed millisecond changes in voltage, but also more slowly changing concentrations of calcium and glutamate, a neurotransmitter, as deep as 350 microns (one-third of a millimeter) from the brain’s surface.

To obtain rapid 3D images of the movement of calcium through neurons, she combined two-photon fluorescent microscopy with a different technique, Bessel focus scanning. To avoid time-consuming scans of every micron-thick layer of the neocortex, the excitation focus of the two-photon laser is shaped from a point to a small cylinder, like a pencil, about 100 microns in length.

This pencil beam is then scanned at six different depths through the brain, and the fluorescent images are combined to create a 3D image. This allows more rapid scanning with little loss of information because in each pencil-like volume, typically only one neuron is active at any time. The mesoscope can image an area about 5 mm in diameter nearly a quarter of one hemisphere of the mouse brain and 650 microns deep, close to the full depth of the neocortex, which is involved in complex information processing.

Story source:

University of California – Berkeley.

This research was published in

Nature

Ibezim chukwuemerie

EDM freak... Digital marketer... Tech savvy... In love with human science... Studies zoology at University of Nigeria... Chief editor at Ominy science. Follow him on Twitter and Instagram or like our page on Facebook

What do you think??

Copyright 2020 Ominy science

Content published here is for information purposes alone.